Study of b-jet tagging using bbh(→bb) and ddh(→dd) samples

K. Jyothsna Rani
Department of High Energy Physics

In a Nutshell

Outline

- Introduction
- Higgs Production
 Mechanism and Decay
- Simulation Framework at Dzero
- b quark properties
- Identifying jets formed by b
 quarks
- Event Kinematics
- Secondary Vertex Tagging studies
- Conclusions

Introduction

- Tevatron at Fermilab is the world's highest energy accelerator.
- At Tevatron proton and antiproton are accelerated to 1 TeV.
- Proton and antiprotons are collided at CM energy \sqrt{s} = 2 TeV at two detectors CDF and Dzero.

DZero Detector

Dzero is a collider detector at Fermilab.

Bit of Theory

- Higgs is the missing piece in Standard Model.
- SM Higgs mass is unstable against quantum fluctuations.
- One of the solutions to the above is to go for Minimal Supersymmetric extension of Standard Model (MSSM).

Higgs in MSSM

- Minimal Supersymmetric
 Standard Model is
 - SM
 - An extra Higgs doublet
 - Supersymmetric partners
- Five physical Higgs bosons
 h, H, A, H[±]
- Two free parameters in this theory are m_A and $tan\beta$ where $tan\beta$ is ratio of vacuum expectation values of two Higgs doublets.

Why MSSM 4b is preferred compared to SM 4b channel?

- In SM Higgs boson coupling to b quark is rather weak $\sim m_b/v$ (v=246 GeV)
- In MSSM the b-quark coupling to Higgs boson is enhanced by ~ tanβ
- Thus φbb associated production cross-section is expected to be large.

Production Mechanism at Tevatron

These are leading order
Feynman diagrams for neutral
Higgs production at Tevatron.

Simulation Framework

<u>b – quark properties</u>

- b quarks fragment and give B hadrons (b – jets).
- B hadrons have long lifetime $\langle c\tau \rangle \sim 450 \ \mu m$.
 - Secondary Vertex
 - Impact parameters of the decay products
- b quark decays semileptonically 20% of the time.

Identifying b-jets

Soft Lepton tagging

Event Kinematics(1)

- MC samples used are bbh(→bb) 5000 events for b-tagging performance and ddh(→dd) for mistag rate estimation.
- Input Higgs Mass = 120 GeV
- $tan\beta = 1$ and R(cone)=0.5
- No pile-up of min. bias events superimposed.

Event Kinematics(2)

Transverse momentum $P_T = P \sin\theta$ θ is the polar angle.

P_T distributions for

- •Higgs
- •b's from Higgs
- •Associated b's at generator level.

Event Kinematics(3)

Pseudorapidity $\eta = -\ln \tan(\theta/2)$

η distributions for

- Higgs
- •b's from Higgs
- Associated b's at generator level.

Event Kinematics(4)

At the generator level η vs P_T correlations for MC b quarks

b's from Higgs are hard and central Associated b's are soft and forward

Event Kinematics(5)

After reconstruction

Jets are reconstructed with simple cone algorithm R = 0.5

 P_T and η distributions of 4 leading jets

Event Kinematics(6)

After reconstruction

η vs P_T correlations for 4 leading jets

b – jet Tagging(1)

- Secondary vertices are reconstructed using Kalman filter.
- Only those SV are selected for which $L/\sigma > 3$
- Jets are reconstructed with simple cone algorithm R=0.5
 - Jets are SV tagged if $\Delta R(\text{jet, SV}) < 0.3$

b – jet Tagging(2)

SV significance

ΔR between jet and SV

Matching

b – jet Tagging(3)

P_T and η distributions for

b-tagged jet and b-jet

Efficiency = b-tagged jets / all b-jets

b – jet Tagging(4)

 P_T and η dependence of tagging efficiency.

Efficiency is ~50% for $P_T > 30 \ GeV$ and is very poor for $|\eta| > 2$

Mis-tag Rate

Used sample $ddh(\rightarrow dd)$ 5K events

Kinematics are like 4b case

Pass through same analysis chain as 4b's

Conclusions

- bbh production has been looked at with detailed simulations.
- Secondary Vertex b-tagging efficiency and mis-tag rate have been studied.